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The expansion coefficient C7,; of Coulomb potential 1/r; of
molecular systems in hyperspherical harmonics is derived in de-
tail, and the explicit expression is given.
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Introduction

In solving Schrodinger equation directly in irregular
hyperspherical coordinates, it is an essential step to cal-
culate the matrix elements of Coulomb potential 1/r;, with
hyperspherical bases. To do this, it is often needed to ex-
pand 1/7;, in hyperspherical harmonics. Whitten! has ex-
panded 1/, of helium atom in D functions, the bases of
U, group representation. Fabre’ and Avery® have exposit-
ed the expansion of 1/r, in detail. And we* have ever
derived the expansion of 1/ry, of atomic systems in hyper-
spherical harmonics. But these expansions are for atomic
systems.

For molecular systems, there are more than one
atomic centers, and it is needed to transform the Carte-
sian coordinates to Jacobi coordinates and describe the hy-
perspherical harmonics in terms of the later. Potential
1/r; should be expanded in hyperspherical harmonics de-
rived from Jacobi coordinates. In this paper, the explicit
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expression of the expansion of 1/r;, is derived.
Distance vector r;
Jacobi coordinates

For molecular systems of N + 1 particles with Carte-

sian coordinates X;, X;, ***, Xy, they can be transformed
to Jacobi coordinates by the following method:

m-m
& = ]flzl(xz—xl)

g _ M3M2( m1x1+m2x2)
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where m{, m,,

***, my, are the masses of the parti-
cles, and
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Mj=m1+m2+"° +mj (2)

is the mass sum of j particles. The non-relativistic

Schridinger equation is

{ Ev, ZZZZ}W ET  (3)

i<j
where the Laplacian operators are in Jacobi coordinates.
Tie =X = %

In order to express the distance vector r; in terms of
the Jacobi coordinates, we reverse Eq. (1), and define

M.
i = kit B
@j -1 mM; _, (4)
X - ¥ =w§
miX; + myXs _
X3 - M, = w6
-1
mx;
i=1
xj - Alj_l = wj_léj_l (5)
t-1
$ s,
X, — i=1 = w, _
t M,_l t 1§t 1
N
> ma;
i=1
XNel — : MN = ngN
Now
t-1
Z mx;
i=1
X, — 'Mz—l = w161
t-2
S
= x — mz-lx _ M,., T '
THTM Y T M M,
1-2
Em,-xi

With the help of x,_| - i;‘} = w,_28, 5, we can get
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The distance vector r; is, therefore the linear combination
of (¢ —j) Jacobi vectors.

Fourier transform

The potential x| oan be first Fourier trans-
t— A
formed as®
1 _ J‘d3 rk (x x)
| x, - X; | 27(2
= ngdkdwke‘*'("t"f) (7)

where k is the 3-dimension reciprocal-space vector. Sub-
stituting (6) into (7) we get

1 1 T
T = pafdhdane® Gt T80 (8

Defining 3( ¢t — j + 1)-dimensional vectors
§=(§j—19 gjv "t gt—Z’ gt—l)

( 1s 17'”’ t 2y t 1)

Eq. (8) can be written as
1 LJ iK-&
e = 3 dkdae (9)

From Eq. (8) we get

Ki-1='ﬁ.—l“’j—1k
m.
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Kt—1=wz—1k (10)
All the vectors K; are in the same direction of k except
K;_ 1, which is in the opposite direction of k. The scalar
K is

K=ok (11)
where
=B ()
+(1,lnl:iwt-2)2+w3-1}m (12)
Using Eq. (4), 8 can be written as
8, = {MJ——I el
nom J”M 172
+M,r_n:1'nl,_2+mﬁ_l} (13)

Gy is the function of the masses of particles only.
Hyperspherical harmonic expansion

Eq. (9) can be further expanded in hyperspherical

harmonics®

Tﬁf 21[2J‘dkdwkmz llLIW (.Q)

Kg)_- (LI
L2 (-QK)J%’_HL(KE)
= > ¥, (0) (14)

1L|

where D=3(t —j+ 1), \I"m(ﬂ) and WI*L!('QK) are
hyperspherical harmonics in § and K spaces respectively,
Ll is a set of quantum numbers. J§-1+L(KE) is

spherical Bessel function, and

D
P, = 2(2r)27 %'l | dkd .
[FA J Wy (KE)%'I

WrLI(QK)Jg_1+L(KE) (15)

The hyperspherical harmonic W' () is given by

v (Qg) = HN“!E (sing, K 1(cosp K )k
P”'H (cos29, ) Y], (wp)} -
J_luj_l(“ wk) (16)
where N’,’,fi is the nommalization constant,
P,’,fi(cosZ 7:%)) is Jacobi polynomial and
Bi=1+ %
D;-3
a;=7T;_1+ T -1
z',=2n,-+l,-+7:,-_1 (f1=l1) (17)

cosr](-K) and simy(K) are cosine and sine of the hyper-
spherical angles of K-space. Let j =2, the cos 17(K)
sin 7]EK) are defined through the following formula,

(K)

K1=Ksin17§K)lsm77EK)2 *sin 73 smq%K)

K, = Ksmvy, 151n1](K) smrigK) comyéK)

K, _2 = Ksim;gK)lcom;EK)

K, 1 = Keonp'®) (18)
Solving for the cosines we have

con7]$K)1 = KIEI ’ conqu)z —«/F*'K%m

...... , con77£K) K (19)

A K12 + K22

Together with Eqs. (10), (11) and (13) we use all the
cosq,K)(z =1, 2, =*, t —1) are constants determined
by the masses m; of the particles. C?;, can therefore be
written as

t-1
Clu = 2(27r)15)‘2i'“[HN?»?H‘(sin‘ljsK))’i-x .
i=2
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Now, the k part can be easily integrated® (with p =
02k )

1 1y 1
JdeEET_I-Ig—uL(KE) = ngjdp pg_l-’g-uL(P)

) 1

X 5= (21)

The integral of the angular part is
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For Eq. (22) to be not zero identically, the sum of the
quantum numbers, L; + ;1 + L; | of the Wigner coeffi-
cients (LJ;,,001L;,0) (i =1,2, *+, t -=2), must be

even. That is
l2+ l3 + e lt—l + 2(L3 + L4 + o 4+ L,_z) + Lt—l =
even integer (23)

Since L, = l;, we have

L+ly+l,_1+2(Ly+ Ly+ -+ + L,_,) = even inte-
ger (24)
Because ll, 12, ey, lt—l’ Ly, Ly, -, L,-zareinte-
gers, Eq. (24) indicates

(25)

i+ I+ + I,_ = even integer

This again indicates the quantum number L,

L=2(n2+ n3+"'+n,_1)+ l1+12+°'°+l,_1

is even too, and we have

Ll _ ( _ 1)(n2+n3+ +":-1)+%(l1+12+'"+l¢-1) (26)

The expansion coefficient C7 is

t-1 lt—l Q
C? = (- D& EV2(2r)I (= 14

-1
{TIVefi(sing{®) s (congF): »
i=2 ¢

+L

( 2
P“ﬁ(con27],K))H625 (2, L 1)
272

Z 2= [L] (L1 kUi yu; | LU;) »

(Ll—lllm I Lzo)é\U‘_l,u1 (27)
and the expansion is
1 _1x6n
= 2. ¢l () (28)
2t L

where C? is the coefficient of % in C?.

Conclusion

In conclusion, the Coulomb potential 1/r; of molec-
ular systems has been expanded in terms of hyperspherical
harmonics and the expansion coefficient Cf has been ex-
pressed in terms of Jacobi polynomials.
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